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Abstract

Dialogue State Tracking (DST) is crucial for
understanding user needs and executing appro-
priate system actions in task-oriented dialogues.
Majority of existing DST methods are designed
to work within predefined ontologies and as-
sume the availability of gold domain labels,
struggling with adapting to new slots values.
While Large Language Models (LLMs)-based
systems show promising zero-shot DST perfor-
mance, they either require extensive computa-
tional resources or they underperform existing
fully-trained systems, limiting their practical-
ity. To address these limitations, we propose
a zero-shot, open-vocabulary system that in-
tegrates domain classification and DST in a
single pipeline. Our approach includes refor-
mulating DST as a question-answering task
for less capable models and employing self-
refining prompts for more adaptable ones. Our
system does not rely on fixed slot values de-
fined in the ontology allowing the system to
adapt dynamically. We compare our approach
with existing SOTA, and show that it provides
up to 20% better Joint Goal Accuracy (JGA)
over previous methods on datasets like Multi-
WOZ 2.1, with up to 90% fewer requests to
the LLM API. The source code is provided for
reproducibility1

1 Introduction

Dialogue state tracking (DST) is a critical compo-
nent of task-oriented dialogue systems, designed
to extract and maintain users’ goals throughout a
conversation (Young et al., 2007). The challenge of
DST lies in the infinite possibilities of user/agent
conversations and the constant evolution of ser-
vices, schemes, and APIs that dialogue systems
interface with (Ren et al., 2018). While traditional
approaches demonstrate reasonable performance
within predefined ontologies (Mrkšić et al., 2017;

1https://github.com/GGLAB-KU/
open-vocab-dialogue-understanding

Liu and Lane, 2017), current research is exploring
various strategies for domain transfer. These strate-
gies include adaptation to unseen domains (Li et al.,
2021; Aksu et al., 2023), leveraging non-dialogue
QA data to enhance generalization (Liu and Lane,
2017), and framing DST as a question-answering
problem using natural language descriptions to en-
able zero-shot transfer (Lin et al., 2021b). However,
these approaches still require training on seen do-
mains and closely adhere to domain ontologies.

A new generation of large language mod-
els (LLMs) such as GPT-4 (OpenAI, 2023), Llama
2 (Touvron et al., 2023) and Gemini 1.0 (Gemini,
2024) promise the ability to solve tasks without
task-specific fine-tuning, relying instead on the ex-
tensive world knowledge acquired from training on
vast amount of data. These LLMs have shown re-
markable capabilities in in-context learning (ICL),
where the model generates responses based on
a natural language prompt and a few examples,
achieving significant advancements over fine-tuned
methods in few-shot scenarios. Researchers have
begun to apply LLMs with ICL techniques to ad-
dress the DST challenge (Heck et al., 2023; Pan
et al., 2023; Feng et al., 2023), yet they have not
surpassed state-of-the-art (SOTA) supervised meth-
ods, or lacked practicality in terms of number of
queries to be executed for every single turn, and
are highly dependent on the fixed ontology. Fur-
thermore, the majority of these works (Heck et al.,
2023; Feng et al., 2023) use gold domain labels,
usually skipping the domain classification phase,
which is nontrivial.

To address these challenges, we introduce a
zero-shot, resource-efficient, and open-vocabulary
pipeline system for task-oriented dialogue under-
standing. Our pipeline starts with domain classi-
fication, a crucial phase often overlooked in ex-
isting approaches, followed by two complemen-
tary approaches for DST. First, we propose DST-
as-QA, which transforms DST into a multiple-
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choice QA problem (Lin et al., 2021a), provid-
ing a strong adaptation for smaller or less capa-
ble LLMs. Second, inspired by the recent success
of self-refining/correcting prompts (Tandon et al.,
2022; Madaan et al., 2024), we propose DST-as-
SRP—for the first time in literature—that consid-
ers LLM as a black-box Dialogue State Tracker,
and cast the problem into a well-structured prompt,
i.e., Self-Refined Prompt (SRP). Unlike ontology-
based approaches that need to process all possi-
ble slot value pairs (Ye et al., 2022a) within the
ontology, open-vocabulary approaches only use
the generic slot definition (which sometimes is
common knowledge, e.g., hotel name, restaurant
area) and generate/extract the values directly from
the dialogue. We then perform a series of ex-
periments with the most recent open-source (e.g.,
Llama3) and proprietary language models (e.g.,
GPT-4-Turbo) on common DST datasets such as
MultiWOZ and SGD (see §5). We further measure
the effect of having access to gold domains (i.e.,
with/without domain classification), and ontology;
and compare our approaches with various SOTA
methods (both fully trained and zero-shot) on fair
settings (e.g., by using the same LLM). We show
that DST-as-SRP achieves new state-of-the-art re-
sults with up to 90% fewer requests to the LLM
API(compared to a previous SOTA that prompts
LLMs for each slot (Feng et al., 2023)), improving
the strict Joint Goal Accuracy (JGA) score by 20%,
3%, and 2% on the MultiWOZ 2.1, MultiWOZ 2.4,
and SGD datasets, respectively, while still being
constrained to open-vocabulary and zero-shot set-
tings unlike current SOTA methods.2 Finally, we
show that the improvements are not simply due to
using a larger language model but the DST-as-SRP
technique in a controlled setup.

2 Related Work

Dialogue State Tracking as a Question-
Answering Problem The field has seen various
approaches to addressing dialogue state tracking
(DST) by framing it within a question-answering
(QA) context. Gao et al. (2019) introduced slot-
filling as sequential QA tasks, employing a Re-
current Neural Network (RNN) for generating re-
sponses. Following that trend, Tavares et al. (2023)
fine-tuned a T5 model for the sequential QA tasks
and performed zero-shot tests in unseen domains.

2When removing the open-vocabulary constraint for a
more fair comparison with current SOTA, we observe an addi-
tional 2% JGA gain for the MultiWOZ datasets as expected.

Similarly, Li et al. (2021) employed manually cre-
ated questions and a GPT-2 decoder for generating
slot values under a supervised framework, then
tested for zero-shot applicability. Cho et al. (2023)
used a retrieval model to find relevant QA pairs
from previous dialogues, then finetuned a T5 model
with these samples to adapt to unseen domains.
To the best of our knowledge, there exists no in-
context learning approach that formulates DST as
a QA task. All the aforementioned approaches re-
quire a form of fine-tuning and domain adaptation
technique. Furthermore, majority of the models
extensively depend on existing ontologies for gen-
erating answers (Zhou and Small, 2019; Cho et al.,
2023), and several others (Tavares et al., 2023; Li
et al., 2021) struggle with the efficiency, since they
need to generate tremendous amount of questions
per turn (see §6.2).

LLMs Zero-Shot Dialogue State Tracking Pan
et al. (2023) was the first to explore ChatGPT’s
zero-shot dialogue understanding capabilities using
schema-based prompts, achieving notable success
in basic slot-filling tasks but encountering issues
with multi-turn dialogues. Then, Heck et al. (2023)
assessed ChatGPT’s performance across various
slot types, employing custom prompts for different
interaction lengths and slot types, slightly lagging
behind state-of-the-art zero-shot models in han-
dling complex slots. After that, Feng et al. (2023)
attempted to track the slot values of the dialogue
turns one by one, appending all possible slot values
from schema and outperformed the current zero-
shot models. Yet, this approach needs extensive
number of queries for every turn, and unable to
handle the dontcare slot values. Despite the re-
markable results reported by these models, their
dependence on predefined schemas and ontologies
limits their practical utility in DST, particularly in
environments where new entities, types, and ser-
vices are continuously introduced.

While both QA and DST-as-zero-shot ap-
proaches have shown promise, our research specif-
ically addresses the challenge of identifying rel-
evant slots to query efficiently, and generating
possible answer options for the questions (open-
vocabulary), instead of using ontology-dependent
answer templates. Furthermore, we experiment
with a realistic end-to-end pipeline that includes
domain classification, unlike approaches that treat
domains as “given” and use the gold annotation.



3 Methodology

An overview of our methodology is given in Fig. 1.
Our pipeline begins by identifying the active do-
main for each turn. For domain classification, the
active turn and all preceding turns in the dialogue
history are passed to the model, which determines
the domain using a specific prompt tailored to the
language model (see § 3.2). Next, we extract the
values of the selected domain slots using two ap-
proaches: question answering (see § 3.3) and self-
refined prompting (see § 3.4).

3.1 Self-Refined Prompt

Self-Refined prompt (SRP) approach (Madaan
et al., 2024) iteratively refines the prompts harness-
ing the adaptive capabilities of language models
(LMs). It has been shown to benefit many NLP
tasks such as Code Optimization, Sentiment Re-
versal and mathematical reasoning that encouraged
us to employ it both for domain classification and
dialogue state tracking. Initially, a basic prompt
template P serves as either a simple task descrip-
tion outlining what the LM needs to accomplish or
as a preliminary version of the prompt that will be
iteratively improved. The LM generates an initial
output based solely on P , without any additional
context or task-specific information. Following
this, the prompt itself includes instructions for the
LM to analyze its output, identifying ambiguities,
inaccuracies, or gaps in understanding. The SELF-
REFINE approach is then employed, where the
LM provides feedback on its own output, such as
identifying specific errors or suggesting improve-
ments. The model uses this feedback to refine
P , generating a new version P ′ that addresses the
identified shortcomings, such as including more
specific instructions or restructuring the format.
This cycle of self-assessment, feedback, and re-
finement continues until the prompt P evolves into
a version P ′ that meets a stopping criterion. The
stopping criteria are reached either when the model
begins to make only minor changes, suggesting that
further refinements would not lead to notable im-
provements, or when the iteration limit is reached
to ensure efficiency. The process ensures that the
model optimizes its instructions and task execu-
tion autonomously, ultimately resulting in a prompt
that consistently achieves better task performance
across diverse contexts.

In this study, each LLM uses a set of custom
self-refined prompts tailored to its specific charac-

teristics and capabilities. The decision to employ
model-specific prompts was driven by the recogni-
tion that different LLMs, due to their unique archi-
tectures and training data, may respond optimally
to slightly different linguistic cues and task formu-
lations (Zhu et al., 2024).

3.2 Domain Classification
Understanding user intent and their specific re-
quests is crucial for dialogue state tracking (DST)
and begins with identifying the target domains.
This pivotal step is often overlooked in DST mod-
els, which either rely on a predefined set of do-
mains from the dataset or attempt to indiscrim-
inately track slots across all domains for each
interaction. To develop a robust DST pipeline
that accommodates multiple domains per turn, we
classify the domains for each turn within the dia-
logue by incorporating dialogue history into the
equations. Specifically, the input to the classi-
fier is both the turn and the dialogue history. Let
D = {d1, d2, . . . , dn} be the set of predefined
domains and let Ht−1 represent the dialogue his-
tory up to turn t, with Ut being the user’s utter-
ance at turn t. Then we define the classification
function f as f(Ut, Ht−1) → {di1 , di2 , . . . , dik},
where {di1 , di2 , . . . , dik} ⊆ D represents the set
of domains classified for turn t. To approximate
this function, we use a multi-label classification
approach that can guide the model to infer the ap-
propriate domains from the dialogue. The final
prompt template is given in App. A.1.

As domain classification is the first step in the
pipeline, its accuracy is critical for downstream
tasks like slot tracking. Any misclassification can
have a cascading impact. To mitigate this, we en-
sure that domain classification is independent for
each dialogue turn. For instance, if a turn is classi-
fied as taxi-related, we don’t carry over the “taxi”
to subsequent turns. To further improve the accu-
racy, we enforce strict guidelines in the prompts
to ensure the classification remains grounded in
the specific dialogue context and is not biased to-
ward domains that might be inferred from specific
phrases (the instruction part of the prompt). For
example, given the utterance “I want a taxi to go to
the hotel.”, the domain should be strictly classified
as “taxi” rather than “hotel” and “taxi”. This is also
to solve the classification of the closing turns (e.g.,
“have a nice day”, “anything else for today”), which
contain generic terms and hurt the performance as
also showed in Hudeček and Dusek (2023).



Figure 1: Overview of the architecture, comprising two stages: 1. Domain Classification and 2. Dialogue State
Tracking (DST). DST can be performed via either 2.a: DST-as-SRP or 2.b: DST-as-QA. The color scheme is as
follows: prompts have a cyan background, schema has a blue background, results are in blue, and output stages
have a yellow background. (The prompts in this figure are illustrative. For actual prompts, please refer to App. A)

3.3 DST as Question Answering

Our DST-as-QA approach is given in Fig. 1(2.b),
DST operates methodically at each user turn, in-
dexed by i, incrementally updating the state as the
dialogue progresses. First, we identify the set of
entity types from the dataset README files (e.g.,
TIME, LOCATION etc...). Then, we extract named
entities via zero-shot prompting given the user ut-
terance Ui resulting in a set Ei = {e1, e2, . . . , en},
which includes all named entities identified dur-
ing the turn. For instance, if a user says “I’ll need
to arrive by 11:00 and it should be going to Lon-
don Liverpool Street”, the named entities extracted
could include “11:00” for the TIME entity and
“London Liverpool Street” for the LOCATION en-
tity. Next, these entities are matched by type to
corresponding slots using a predefined matching
function given in App. G, forming matched pairs
mi = {ei, {s0..n}}. Note that the mapping can be
one-to-many. For instance, “11:00” is matched
both to the leave-at and arrive-at (TIME),
and “London Liverpool Street” is matched to the
departure and destination slots (LOCATION).
Then, for each slot si that has been matched with
an entity type (e.g., leave-at), a multiple-choice
question with the options: found entity value (e.g.,
11:00), and None. There are two exceptional cases:
First case is detecting a dontcare slot. In that case,
it is added to the options. The second case occurs

when slots of the same type are captured in previ-
ous turns (e.g., booking a hotel and then a taxi to
the booked hotel). Then, we add the values of these
slots to the options to allow the model to handle
cross-referencing issues (i.e., where a slot value in
one domain depends on a slot value from another
domain). We finally concatenate the question with
the active turn Ui, and the dialogue history Hi−1

and the options and then prompt the model to select
one of the options. The dialogue state at index i,
denoted Di, is updated with these selections, con-
tinually adapting with each user turn. This process
ensures precise tracking and contextual updating
of the dialogue, facilitating a dialogue state that
dynamically adapts to user inputs and maintains
contextual relevance throughout the interaction.

Here, we create questions for only subsets of
the slots that have extracted values of the same
type, rather than for all the slots in the schema (Lee
et al., 2021; Lin et al., 2021b; Li et al., 2021), which
should significantly reduce computational costs. To
illustrate, consider the MultiWOZ dataset, which
includes 61 slots across 8 domains. If we were to
generate questions for each slot in all 7372 turns
of the test split, this would necessitate a total of
449,692 questions. However, by targeting only rel-
evant subsets, we can dramatically decrease this
number. Additionally, our approach does not rely
on predetermined slot values from the schema or



database (Lee et al., 2021; Feng et al., 2023); in-
stead, we extract dynamic values directly from user
and system turns (open-vocabulary). This strategy
allows the dialogue system to adapt more flexibly
and accurately to the actual data presented dur-
ing each interaction, reflecting real-world usage
more effectively than static, pre-defined lists could.
Furthermore, we utilize multiple-choice questions
rather than open-ended ones (Li et al., 2021; Lin
et al., 2021b; Tavares et al., 2023), providing the
language model with specific, contextually rele-
vant options. This approach minimizes the risk
of misinterpretation and improves the precision of
the language model’s responses, ensuring that the
dialogue management is both accurate and contex-
tually appropriate. The questions prompts are given
in App. A.2 and App. A.3.

3.4 DST as Self-Refined Prompt
The general SRP approach is explained in Sec.3.1.
Here, we explain the structure of the final revised
version of the prompt App. A.4. It is divided into
three main sections: task, schema, and regulations.
The task section specifies actions for the language
model, such as identifying updated or confirmed
slots based on user input. The schema section
provides a structured framework for the model by
listing the slots to be tracked along with their de-
scriptions. Finally, the regulations section defines
the precise conditions and expected output formats,
ensuring accurate updates of slot values.

Unlike previous approaches (Hudeček and
Dusek, 2023), our method uses a consistent prompt
template with adaptable slot names across all do-
mains, making it flexible and efficient for support-
ing new slots with minimal modifications. More-
over, we instruct the model to track all slots simul-
taneously rather than one at a time, in contrast to
(Feng et al., 2023), further improving efficiency. To
illustrate, if we were to generate prompts for each
slot individually across all 7372 turns in the Mul-
tiWOZ test split, similar to previous methods, this
would result in 449,692 prompts (could be long
prompt due to the task description length). Our
approach, however, reduces this number signifi-
cantly by consolidating all the domain slots into
one comprehensive prompt per turn domain. It’s
worth noting that our schema avoids listing exam-
ples or potential slot values, focusing instead on
precise task descriptions. This strategy improves
the model’s adaptability to varied dialogue con-
texts. Finally, unlike several previous approaches

(Feng et al., 2023) that don’t distinguish between
“None” and dontcare slots, our method explicitly
handles such cases, preventing misinterpretations
and inaccuracies.

4 Experimental Setup

4.1 Datasets

We conduct experiments using test splits of two
most common datasets for multi-domain task-
oriented dialogue.

Schema-Guided Dialogue (SGD) SGD (Rastogi
et al., 2020) is the most challenging dataset, consist-
ing of over 16,000 conversations between a human
user and a virtual assistant. It encompasses 26
services across 16 domains, such as events, restau-
rants, and media. Notably, SGD introduces unseen
domains in the test set, challenging the generaliza-
tion ability of the model.

MultiWOZ (Budzianowski et al., 2018) has had
a significant impact on task-oriented dialogue re-
search, serving as the first substantial public dataset
available to researchers in this domain. The dataset
includes over 10K conversations across eight do-
mains, such as Train, Taxi, Bus, Hotel, Restaurant,
Attraction, Police, and Hospital. Following the
foundational MultiWOZ 2.0, the dataset underwent
several significant annotation fixes and improve-
ments (Eric et al., 2020; Zang et al., 2020; Han
et al., 2020; Ye et al., 2022a). We chose to use ver-
sions 2.1 and 2.4 because 2.1 is the mostly widely
in literature and 2.4 is the most stable version, and
using both allows us to compare our results with
previous work in a consistent manner.

4.2 Evaluation

Following the previous works (Hudeček and Dusek,
2023; Ye et al., 2022b; Feng et al., 2023), we use ac-
curacy for the domain classification task, and Joint
Goal Accuracy (JGA) as main metric for the DST
task. We also report Average Goal Accuracy (AGA)
metric for the DST task in one experiment to com-
pare the performance with the baseline model. JGA
is the primary metric for DST evaluation and repre-
sents the ratio of dialogue turns for which the entire
state is correctly predicted3. AGA represents the
average accuracy of the active slots in each turn.
A slot becomes active if its value is mentioned in

3Following Nekvinda and Dušek (2021) and Feng et al.
(2023), we use Fuzzy Match to compare the slots values.



the current turn and is not inherited from previous
turns.

4.3 LLMs

We identify 5 popular and capable4 LLMs that
are diverse in architecture, scale, and avalabil-
ity, namely as GPT-45 (OpenAI, 2023), Gemini
6 (Gemini, 2024), LLAMA37 (Meta-AI, 2024),
QWEN 8 (Qwen Team, 2023), and Mixtral9 (Team,
2024). We use the respective model APIs, where
available. Due to computational constraints, we
prioritize the best performing open-source and pro-
prietary models, namely as Llama 3 and GPT-4-
Turbo on the SGD dataset, and don’t perform ex-
periments with others. Preliminary tests on the
subsets were conducted for each model to identify
optimal temperature and top_p parameters. The
best-performing configurations were then applied
to the entire datasets for a thorough evaluation. Fur-
ther details on the prompt parameters are given in
App. B.

5 Experiments and Results

5.1 Domain Classification

We present the domain classification accuracy on
MultiWOZ and SGD in Table 1. These results re-
veal that while all models are effective at domain
classification tasks, Gemini demonstrates a slightly
better performance in the MultiWOZ datasets. The
improved accuracy on MultiWOZ 2.4 suggests
that advancements in dataset quality and model
improvements contribute to better overall perfor-
mance. Both Llama3 and GPT-4 perform worse
on SGD. We believe this is due to higher number
of domains (e.g., 7 in MultiWOZ domains versus
16) and the considerable similarity between the
SGD domains (see App. E). We observe that GPT-
4-Turbo yields consistently high classification accu-
racy, showing robust performance across schemes.

5.2 Dialogue State Tracking

Our main results for the DST task are given Ta-
ble 2, offering a comparative analysis of various
language models on the MultiWOZ 2.1, 2.4 and

4These LLMs are chosen from the models that rank high
in the Hugging Face Chatbot Leaderboard.

5Model variant: gpt-4-turbo-preview
6Model variant: gemini-1.0-pro
7Model variant: Meta-Llama-3-70B-Instruct
8Model variant: qwen1.5-32b-chat
9Model variant: Mixtral-8x7B-v0.1

LLM MultiWOZ SGD

2.1 2.4

GPT4-Turbo 94.56 95.98 93.38
Llama 3 93.09 94.52 85.49
Qwen 1.5 94.01 95.37 -
Gemini 1.0 94.89 96.21 -
Mixtral v0.1 90.49 91.72 -

Table 1: Domain Classification accuracy varies across
different LLMs when applied to the MultiWOZ 2.4 (has
7 domains), and SGD (has 18 domains) datasets

SGD datasets. We provide our end-to-end pipeline
results where we use the output from our domain
classification module with Pred column. Since pre-
vious state-of-the-art methods often assume access
to gold domains, we also provide results with the
same setting shown with the Gold column for a
fair comparison. As expected, we observe a perfor-
mance drop for the end-to-end case compared to the
gold. While the drop is small for the QA approach,
the gap is substantially higher for our state-of-the-
art performing approach, SRP both with GPT-4-
Turbo and Llama3. We couldn’t find a certain ex-
planation for this, but it could be related to QA and
domain classification both relying on the LLM’s
ability to answer questions. Having the same con-
text and asking different questions might lead to
similar trends in incorrect answers, resulting in less
impact on the overall pipeline. Additionally, we no-
tice that the performance gap between MultiWOZ
2.1 and 2.4 is smaller for our models compared
to fully-trained models. We believe that one rea-
son would be the differences between the level of
robustness to noise, i.e., large models are shown
to be more robust to syntactic noise (Zheng and
Saparov, 2023). This observation is consistent with
the zero-shot results reported by Pan et al. (2023).

We find that the ranking of the LLMs are similar
for both QA and SRP approaches: Gemini/Mixtral,
Llama3, and GPT-4-Turbo, mostly showing high
correlation with the model size with some excep-
tions. Except from Mixtral v0.1 and Qwen 1.510,
all language models yield considerably higher JGA
scores with SRP compared to QA. This issue might
be due to error cascading in QA, where an incorrect
entity value extracted leads to incorrect slot values
being selected in subsequent steps. On the other
hand, the performance gap between the best and
worst performing models are significantly lower

10Qwen 1.5 couldn’t distinguish between the task and the
dialogue, and provided response to the user’s utterance in the
dialogue



for QA compared to SRP—26% for QA versus up
to 41,45% for SRP. We believe there are two main
reasons for this result. First of all, QA method
seems particularly effective for smaller models by
framing DST as a simpler, question-answering task,
which enables these models to focus on specific
slots. This reduces the processing overhead and im-
proves efficiency for the smaller language models.
Second, SRP requires a deeper understanding of
the task, which is only demonstrated by the larger
LLMs like GPT-4-turbo and Llama 3. They show
higher capacity in following the structured instruc-
tions provided by the prompts and incrementally
updating slot values accurately. SRP demonstrates
the potential for handling dynamic and complex
dialogue scenarios by large language models, as it
guides the models through structured instructions
for efficient zero-shot DST.

The comparison with SOTA models reveals that
our approach generally surpasses both zero-shot
and fully-trained models. While zero-shot mod-
els often exhibit lower performance, even those
trained with comprehensive data struggle to match
our results. For instance, our SRP approach using
the open-source model Llama3 outperforms TOA-
TOD (Bang et al., 2023)—a recently introduced
fully trained model—by around 7 points. Further-
more, models employing ontologies, such as Pre-
liminary Evaluation of ChatGPT (Pan et al., 2023),
LDST (Feng et al., 2023), and TOATOD (Bang
et al., 2023), also fall behind our SRP with GPT-4-
Turbo without any access to ontology values. Note:
The majority of the cited SOTA methods use golden
domains for evaluation. Comparing these directly
to our predicted domain results may not be entirely
fair, as it does not reflect equivalent testing condi-
tions. Similar to domain classification, we observe
consistently higher scores for MultiWOZ 2.4 from
all approaches and models, signaling the increased
quality of the dataset.

Next, as mentioned previously, for fair compar-
ison with SOTA models, we assess the impact of
using slot values from ontology in our approaches.
After deriving the slot values, we incorporate them
into the slot description when employing self-
refined prompts in DST. Due to resource limita-
tions, we only experiment with the best-performing
open-source and proprietary LLMs (GPT-4-Turbo
and Llama 3). As given Table 2, incorporating
ontology-derived details (when available) into mod-
els like GPT-4-Turbo and Llama 3 enhances their
ability to accurately fill dialogue slots, resulting

with around 2% and 6% improvements for GPT-4
and Llama3 respectively. This suggests that even
well-performing models can benefit from the in-
tegration of more structured data, leading to im-
provements in how they process and respond within
conversational contexts.

Since the language model version might have a
large impact on results, we compare LDST (Feng
et al., 2023) and SRP using the same model which
is shown to be capable: GPT-3.5-Turbo. By using
the same dataset, slot descriptions, possible val-
ues, and language model across different prompts
(ours versus LDST), we show that SRP outper-
forms LDST by a large margin (9%).

6 Discussion & Analysis

6.1 Error Analysis

Figure 2: JGA Per Domain for MutliWOZ 2.4

To get a better picture of the SRP approach
performance with DST, we analyze the results of
GPT-4-Turbo and Llama 3 per domain. Fig. 2
highlights that GPT-4-Turbo exhibits notable per-
formance dips in the taxi domain. This perfor-
mance issue could be related to the normalized
leave-at and arrive-by time values in Multi-
WOZ 2.4 and the need for extra reasoning to handle
cross-referencing slot values. Llama 3, while com-
petent in certain areas, displays more variability.
It performs well in the train domain but struggles
notably in the attraction and hotel domain. More
detailed analysis per slot can be found in App. F.

6.2 Analysis of LLM Prompt Requests

Finally, we evaluate the efficiency and scalability
of our models by analyzing the number of LLM
prompt requests required, a key metric for computa-
tional cost and deployment viability. Table 4 shows
the average API calls per dialogue (see App. C for
calculation details and the prompt length considera-
tion) for MultiWOZ 2.4. The results show that our
QA and SRP approaches need 96.35% and 97.08%



Models MultiWOZ 2.1 MultiWOZ2.4 SGD

Gold Pred Gold Pred Gold Pred

Full TOATOD (Bang et al., 2023) 54.97 - - - - -
D3ST (Zhao et al., 2022) 57.80 - 75.90 - 86.40 -
LDST (Feng et al., 2023) 56.69 - 79.94 - 84.47 -
paDST (Ma et al., 2019) - - - - 86.53 -
Schema-Driven Prompt. (Lee et al., 2021) 56.66 - - - - -

Zero-Shot Prel. Eval. of ChatGPT (Pan et al., 2023) - 60.28 - 64.23 -
LDST (Feng et al., 2023) - - 83.16 - 84.81 -

Ours QA Gemini 1.0 (1.6T Param.) 50.21 49.73 50.90 50.28 - -
Mixtral v0.1 (45B Param.) 51.07 50.61 51.23 50.72 - -
Llama 3 (70B Param.) 56.35 56.03 57.39 57.07 - -
Qwen 1.5 (32B Param.) 58.29 57.45 59.01 58.43 - -
GPT-4-Turbo 75.23 74.52 76.96 76.01 - -

SRP Mixtral v0.1 (45B Param.) 45.51 44.59 44.85 43.81 - -
Gemini 1.0 (1.6T Param.) 68.79 65.93 69.93 67.00 - -
Llama 3 (70B Param.) 70.01 65.06 71.27 66.20 76.34 -
Llama 3+Ontology (70B Param.) 76.39 - 76.73 - - -
GPT-4-Turbo 84.02 77.10 86.30 79.58 88.70 -
GPT-4-Turbo+Ontology 86.01 - 88.33 - - -
Qwen 1.5 (32B Param.) - - - - - -

Table 2: Comparative performance of DST models on MultiWOZ and SGD datasets using JGA with ground-truth
(gold) and predicted domains (pred). Full: Methods trained on full training split, +Ontology: Access to gold
domain ontology, Pred: Using predicted domains, Gold: Using gold domains. “-” denotes results being not
available. Overall best scores are given in bold, best scores for each category is underlined.

Dataset Model LLM AGA*

MultiWOZ 2.2 LDST (Multi-Return) GPT-3.5-Turbo 81.50
MultiWOZ 2.2 Ours GPT-3.5-Turbo 90.98

Table 3: Comparison of LDST and SRP on the Multi-
WOZ 2.2 Test Split.
*We report AGA (not JGA) here to compare with the provided
AGA scores in LDST.

fewer requests, respectively, compared to the “All
Slots” approaches, and 86.33% and 89.06% fewer
requests, respectively, compared to the “Turn Do-
mains Slots” approaches. However, compared to
a baseline method that includes all schema slots
for each turn in a single prompt, our approaches
necessitate 120.16% and 77.02% more requests,
respectively. This increase is due to a significant
reduction in prompt length, as we now use only
the slots of the active domains for each turn rather
than listing all slots for all domains. Additionally,
there is a substantial improvement in JGA when
compared to the results and prompts reported by
Heck et al. (2023).

7 Conclusion

In this work, we introduce a zero-shot, open-
vocabulary Dialogue State Tracking (DST) sys-
tem that integrates domain classification and DST
in a single pipeline. By reformulating DST as

DST Approach # LLM API Requests

All Slotsa 449.7
Turn Domains’ Slotsb 120.2
All Slots in One Promptc 7.4
DST-as-QA 16.4
DST-as-SRP 13.1
a Track all slots from all domains
b Track slots from the turn domains only but each in a single

LLM request
c Track slots from all domains but in a single LLM request

Table 4: Comparison of Different Approaches and Their
Number of LLM Prompt Requests for the MultiWOZ
Test Split

a question-answering task and employing adapt-
able prompting techniques, our system dynami-
cally adapts to new slot values without additional
fine-tuning. We find that by selecting appropriate
techniques—either QA-based or well-structured
prompts tailored to the size of the language model—
we can surpass SOTA models even without rely-
ing on any predefined values from ontologies. Al-
though integrating the domain classification stage
reduces the overall pipeline performance, it is es-
sential for creating a practical system. Finally, we
demonstrate the computational efficiency of our
techniques by smartly selecting the slots to query
and optimizing the prompts to track all input slots
in one go, rather than querying the system for each
slot individually.
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Limitations

The performance of the Self-Refined Prompt (SRP)
approach is dependent on the specific language
model variant employed. Each model, has unique
characteristics and capabilities that influence how
well it can interpret and execute the prompts. Con-
sequently, the SRP method requires careful tuning
and adjustments for each model variant to achieve
optimal performance. This process involves it-
eratively refining prompts. Additionally, the re-
liance on specific model variants means that up-
dates or changes to these models by their devel-
opers could necessitate further adjustments to the
SRP approach.
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Tomáš Nekvinda and Ondřej Dušek. 2021. Shades of
BLEU, flavours of success: The case of MultiWOZ.
In Proceedings of the 1st Workshop on Natural Lan-
guage Generation, Evaluation, and Metrics (GEM
2021), pages 34–46, Online. Association for Compu-
tational Linguistics.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Wenbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che,
and Libo Qin. 2023. A preliminary evaluation of chat-
gpt for zero-shot dialogue understanding. Preprint,
arXiv:2304.04256.

Alibaba Group Qwen Team. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018. To-
wards universal dialogue state tracking. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2780–2786,
Brussels, Belgium. Association for Computational
Linguistics.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Learning to repair: Repairing model out-
put errors after deployment using a dynamic memory
of feedback. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 339–352,
Seattle, United States. Association for Computational
Linguistics.

Diogo Tavares, David Semedo, Alexander Rudnicky,
and Joao Magalhaes. 2023. Learning to ask questions
for zero-shot dialogue state tracking. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’23, page 2118–2122, New York, NY, USA.
Association for Computing Machinery.

Mistral AI Team. 2024. Mixtral of experts. Preprint,
arXiv:2401.04088.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.eacl-main.91
https://doi.org/10.18653/v1/2021.eacl-main.91
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.21437/Interspeech.2017-1326
https://doi.org/10.21437/Interspeech.2017-1326
https://doi.org/10.21437/Interspeech.2017-1326
https://arxiv.org/abs/1912.09297
https://arxiv.org/abs/1912.09297
https://arxiv.org/abs/1912.09297
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/2021.gem-1.4
https://doi.org/10.18653/v1/2021.gem-1.4
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.04256
https://arxiv.org/abs/2304.04256
https://doi.org/10.18653/v1/D18-1299
https://doi.org/10.18653/v1/D18-1299
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.1145/3539618.3592010
https://doi.org/10.1145/3539618.3592010
https://arxiv.org/abs/2401.04088


Fanghua Ye, Jarana Manotumruksa, and Emine Yil-
maz. 2022a. MultiWOZ 2.4: A multi-domain task-
oriented dialogue dataset with essential annotation
corrections to improve state tracking evaluation. In
Proceedings of the 23rd Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
351–360, Edinburgh, UK. Association for Computa-
tional Linguistics.

Fanghua Ye, Xi Wang, Jie Huang, Shenghui Li, Samuel
Stern, and Emine Yilmaz. 2022b. MetaASSIST:
Robust dialogue state tracking with meta learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1157–1169, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Steve Young, Jost Schatzmann, Blaise Thomson, Karl
Weilhammer, and Hui Ye. 2007. The hidden in-
formation state dialogue manager: A real-world
POMDP-based system. In Proceedings of Human
Language Technologies: The Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT), pages 27–
28, Rochester, New York, USA. Association for Com-
putational Linguistics.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. MultiWOZ 2.2 : A dialogue dataset with
additional annotation corrections and state tracking
baselines. In Proceedings of the 2nd Workshop on
Natural Language Processing for Conversational AI,
pages 109–117, Online. Association for Computa-
tional Linguistics.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,
Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. Preprint,
arXiv:2201.08904.

Hongyi Zheng and Abulhair Saparov. 2023. Noisy ex-
emplars make large language models more robust:
A domain-agnostic behavioral analysis. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4560–4568,
Singapore. Association for Computational Linguis-
tics.

Li Zhou and Kevin Small. 2019. Multi-domain dia-
logue state tracking as dynamic knowledge graph
enhanced question answering. arXiv preprint
arXiv:1911.06192.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Zhenqiang Gong, and Xing Xie. 2024.
Promptrobust: Towards evaluating the robustness
of large language models on adversarial prompts.
Preprint, arXiv:2306.04528.

https://doi.org/10.18653/v1/2022.sigdial-1.34
https://doi.org/10.18653/v1/2022.sigdial-1.34
https://doi.org/10.18653/v1/2022.sigdial-1.34
https://doi.org/10.18653/v1/2022.emnlp-main.76
https://doi.org/10.18653/v1/2022.emnlp-main.76
https://aclanthology.org/N07-4014
https://aclanthology.org/N07-4014
https://aclanthology.org/N07-4014
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://arxiv.org/abs/2201.08904
https://arxiv.org/abs/2201.08904
https://doi.org/10.18653/v1/2023.emnlp-main.277
https://doi.org/10.18653/v1/2023.emnlp-main.277
https://doi.org/10.18653/v1/2023.emnlp-main.277
https://arxiv.org/abs/2306.04528
https://arxiv.org/abs/2306.04528


A Prompt Templates

A.1 Domain Classification
Task Description
For the dialogue turns between the user and system, Which service is the user asking for? Choose from
the following: restaurant, attraction, hotel, taxi, train, bus, hospital, police. If you can’t find a service,
return None.

Final Prompt:
Consider the following domains or services:
restaurant, attraction, hotel, taxi, train, bus, -hospital, police
Now consider the successive turns that I will provide you between two speakers: a
USER and a SYSTEM. Which of the domains (one or more domains) the user is asking
service for?
Guidelines: Follow the following 3 instructions:
- Classify the user’s turn based on the intents, context and previouse turns
- If the user’s turn involves multiple domains, classify it under all relevant
domains. - If the user’s turn doesn’t include a service inquiry, return None.
Format the output in json array with ’domains’ as key and no more details.

A.2 Entity Extraction
I will provide you the definition of the entities you need to extract, the sentence
from where your extract the entities and the output format.

Entity definition: -TIME: explicit time values. Please normalize the time to
24-format.
-NUMBER: Any format of number.
-PRICE: price
-LOCATION: geographic location, address, city, town or area
-NAME: Name of hotel, train station, restaurant or attraction
-CODE: reference number, postcode or id.
-BOOLEAN: true or false for exists or doesn’t exist
Output Format: json with the following keys: {entities} If no entities are presented
in any categories keep it [].
{turn}
Output: Let’s analyze it step-by-step and extract the values carefully. If you are
not sure about any value, don’t return it. Focus on the value, not the abstract
entity.

A.3 Slot Value Multiple Choice Questions
Consider the dialogue below between USER and SYSTEM:
{dialgoue}
Can you select the value of the {slotname} in the last turn (turn index {turnindex})
from the list below?
{slotvalues}

Guidelines:
- Return the answer in JSON with the {slotkey} as key.
- Don’t assume value and just return values from the last turn (turn index
{turnindex}).



A.4 Dialogue State Tracking
Task Description
Consider the following slots and their definitions: {slots}. I will show you a conversation between a
USER and a SYSTEM about {domain}. Your job is to find and note the slot values mentioned in each
turn. If a value is given by the speaker, write it down. If the speaker accepts a value from the previous
turn, include that too. If the speaker asks about a slot, mark it as "?". If the speaker says they don’t have a
preference, mark it as "*". Only include slots that are mentioned, and return the slot values as a JSON
object with these keys: {slotnames}.
GPT-4-Turbo
Consider the list of concepts, called "slots", provided below with their definitions:
{slots}
Now consider the successive turns that I will provide you between two speakers: a
USER and a SYSTEM about {domain}. Please meticulously extract and catalog the slot
values from each pairs of turns based on the provided slot definitions and follow
the following 6 instructions
1. Carefully identify the slot values explicitly mentioned by the speaker in that
turn.
2. Ensure you incorporate any acknowledged or accepted slot values from the directly
previous turn within the current speaker’s turn.
3. For any direct inquiry by the speaker about a specific slot, mark its value as
"?".
4. Carefully identify the slots being asked about by the speaker and mark their values
as "?".
5. If the speaker explicitly mentions they have no preference or it doesn’t matter
for a specific slot, mark its value as "*".
6. If a slot isn’t mentioned in a turn, do not include it.

Ensure thoroughness and accuracy in the identification process. Return the output as
json object with the following as key and their values and no more details:{slotsnames}

GPT-3.5-Turbo
As a dialogue state tracker, your task is to track the slot values that are important
to the user during a series of dialogue turns between a USER and a SYSTEM. We are
interested in capturing the user’s preferences and inquiries about {domain} regarding
specific slots. Slots to Track: {slots}
Instructions: 1. Track slot values mentioned by the user during each dialogue turn.
2. If the system mentions relevant slot values that are important to the user’s
context or preferences, track those as well.
3. If the user explicitly states they have no preference or don’t care about a
specific slot, set its value to *
4. Provide the slot values in a JSON format.
5. Make sure to check all the slots, and don’t miss any.

Output Format: json object
{ slotname: slotvalue }
With the following key: {slots}



Llama 3
As a dialogue state tracker, your task is to track the following domain slots during
the dialogue turns that I will provide afterwards: slots: {slots}
Instructions:
1- Slot actual value: if the user mentioned the slot value
2- Slot actual value: if the system mentioned the slot value and the user didnt́ reject
3- *: if the user states he has no preference 4- Sometimes you need to get the slot
value from another domain if the user refers to it. 5- Otherwise, dont́ return it.
-OutputFormat: json object {slotname: slotvalue } With the following key: {slots}

B Language Models Hyperparameters

Table 5 presents the values of the temperature and
top-p parameters used for different models in the
domain classification and DST tasks.

Model Temperature Top-p

Domain Classification Parameters

GPT-4-Turbo 0.3 0.9
Gemini 1.0 0.8 1
Llama 3 0.25 0.9
Qwen 1.5 0.25 1
Mixtral v0.1 0.25 0.9

Dialogue State Tracking Parameters

GPT-4-Turbo 0.5 0.9
Gemini 1.0 0.9 1
Llama 3 0.7 0.9
Mixtral v0.1 0.25 1
Qwen 1.5 0.25 1

Table 5: Temperature and Top-p Parameters for the
LLMs Models in Domain Classification and DST

C Number of LLM Prompt Requests
Calculations

The following outlines the different scenarios for
prompting a LLM based on the availability of do-
main information, along with the corresponding
calculations for the number of the required prompt
requests:

• All Slots: Query the LLM about every slot in
the dataset. The number of LLM queries is
equal to the total number of slots in the dataset
ontology multiplied by the total number of
turns in the test split

• Domain Slots: Query the LLM about each
slot in that domain. The average number of

queries is equal to the average number of do-
mains per turn multiplied by the average num-
ber of slots per domain for each turn. Sum-
ming these values for all turns in the test split
gives the total

• In SRP, you need to prompt the LLM once per
domain (turn domains that were determined in
the previous step) per turn. The total number
of LLM queries equals the average number
of domains per turn multiplied by the total
number of turns in the test split.

While the prompt length is also a key metric to con-
sider, it can be tricky to identify as it depends on
several factors including the task description, the
slot values, the slot description, the frequency of
sending the task (for each dialogue, slot, domain),
and the LLM API itself. Some LLMs require send-
ing the conversation history each time you add a
new message, whereas others do not.

D Domain Classification Accuracy Rate
per Turn in MultiWOZ 2.4

We analyze the performance of the Domain Classi-
fication models w.r.t turn numbers to gain insights
into model behavior over the progression of di-
alogues. Fig. 3 shows the domain classification
accuracy per turn in MultiWoz 2.4. All models
generally show an increasing trend in classification
accuracy as the dialogue progresses, suggesting
improved performance with richer context. How-
ever, there is a notable dip in accuracy around Turn
8 across all models, indicating a common chal-
lenge in handling dialogue complexity at this stage.
After a deeper analysis, we find the reason to be
the domain change rates, i.e., how many times the
domain changes at a particular turn. Following
the domain classification accuracy results, we find
that Gemini and GPT4-Turbo providing the best
performance, independent from the turn number.
The average number of domain changes per turn



Figure 3: Turn Domain Classification Accuracy for
MultiWOZ 2.4

is determined by identifying the new domains in-
troduced at each turn. For each dialogue in the
test split of the datasets, we iterate through all the
turns, noting the new domains introduced at each
one. We then sum the number of new domains for
each turn and divide this sum by the total number
of dialogues that include that specific turn number.
Similarly, the average number of domains in each
turn is found by summing up the number of active
domains up to that turn, and then dividing this sum
by the number of dialogues that contain that spe-
cific turn number. Figure 4 shows these metrics per
turn.

Figure 4: Average Number of Domains and Domain
Change Per Turn for MultiWOZ 2.4

E SGD Domain Classification Results
Analysis

Referring to Table 1, both GPT-4-Turbo and Llama
experienced a drop in domain classification accu-
racy for the SGD dataset compared to the Mul-
tiWOZ dataset. We visualized the domain mis-
classifications using a heatmap of predicted versus
ground truth domains, revealing key areas of con-
fusion in figure 5. The heatmap of domain mis-
classifications reveals significant patterns where
the model struggles to differentiate between simi-

Figure 5: Ground-Truth Domains vs Incorrectly Pre-
dicted Ones in SGD

lar contexts, as described in the dataset ontology.
Media is frequently misclassified as movies, likely
due to the overlap in content descriptions. The me-
dia domain encompasses a wide range of content,
including shows, movies, sports, and documen-
taries, which overlaps significantly with the movies
domain focused on searching for showtimes and
booking movie tickets. Similarly, movies are often
mistaken for events because both domains share ter-
minology related to showtimes and venues, given
that movies often involve events like premieres and
screenings.

The attraction domain is confused with both
events and hotels. Attractions, described as tourist
spots and points of interest, often host events and
are linked with nearby accommodations, leading
to misclassifications. For example, an attraction
might host a special event or require hotel stays,
creating overlapping contexts. Misclassifications
also occur between hair stylist service and thera-
pist service, both of which involve personal care
appointments. The hair stylist service domain in-
volves finding and reserving hair stylists and salons,
while therapist service involves finding and reserv-
ing therapists, with both domains sharing similar
appointment-related vocabulary.

The heatmap further shows that hotels are of-
ten misclassified as events, reflecting the dual role
of hotels as event venues. Hotels frequently host
conferences, weddings, and other events, which
explains the shared terminology and resulting con-
fusion. Additionally, confusion between ride shar-
ing and restaurants likely stems from discussions
about transportation to dining locations. The ride
sharing domain, which focuses on booking cabs,
overlaps with the restaurants domain where trans-



portation to dining venues is commonly discussed.
These findings highlight the need for more detailed
descriptions that accurately describe the domains
services, particularly for domains with overlapping
contexts as described in the ontology.

F SRP Performance Per Slot

In addition to analyzing the SRP performance per
domain, we visualize its performance per slot in
Fig.6 and 7

G Entities-Slots Mapping

Table 6 below shows the entity-type to slot map for
MultiWOZ dataset.



Figure 6: Slot Value Accuracy for the MultiWOZ 2.4 Using GPT-4-Turbo

Entity Type Slots
NAME Restaurant.name, Attraction.name, Hotel.name, Taxi.destination,

Taxi.departure, Train.train-id, Hospital.department, Police.name
DAY Restaurant.book-day, Hotel.book-day, Train.day, Bus.day
TIME Restaurant.book-time, Attraction.open-hours, Taxi.leave-at, Taxi.arrive-by,

Train.leave-at, Train.arrive-by, Bus.leave-at
LOCATION Restaurant.area, Restaurant.address, Attraction.area, Attraction.address,

Hotel.area, Hotel.address, Train.destination, Train.departure,
Bus.destination, Bus.departure, Hospital.address, Police.address

NUMBER Restaurant.book-people-count, Restaurant.phone, Hotel.book-people,
Hotel.book-stay, Hotel.phone, Hotel.stars, Train.duration,
Train.book-people-count, Taxi.phone, Attraction.phone,
Hospital.phone, Police.phone

PRICE Attraction.entrance-fee, Train.price
TYPE Restaurant.food, Attraction.type, Hotel.type, Taxi.type

RANGE Restaurant.price-range, Hotel.price-range
DONTCARE All

CODE Restaurant.post-code, Restaurant.reference-code, Attraction.post-code,
Hotel.post-code, Hotel.reference-code, Train.reference-code, Police.post-code

BOOLEAN Hotel.parking, Hotel.internet

Table 6: Entity Type-Slot Mapping



Figure 7: Slot Value Accuracy for the MultiWOZ 2.4 Using Llama 3
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