
Quantifying Divergence for Human-AI Collaboration and Cognitive Trust
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Abstract

Predicting the collaboration likelihood and
measuring cognitive trust to AI systems is more
important than ever. To do that, previous re-
search mostly focus solely on the model fea-
tures (e.g., accuracy, confidence) and ignore the
human factor. To address that, we propose sev-
eral decision-making similarity measures based
on divergence metrics (e.g., KL, JSD) calcu-
lated over the labels acquired from humans and
a wide range of models. We conduct a user
study on a textual entailment task, where the
users are provided with soft labels from vari-
ous models and asked to pick the closest option
to them. The users are then shown the simi-
larities/differences to their most similar model
and are surveyed for their likelihood of col-
laboration and cognitive trust to the selected
system. Finally, we qualitatively and quanti-
tatively analyze the relation between the pro-
posed decision-making similarity measures and
the survey results.

We find that people tend to collaborate with
their most similar models—measured via JSD—
yet this collaboration does not necessarily im-
ply a similar level of cognitive trust. We release
all resources related to the user study (e.g., de-
sign, outputs), models, and metrics at our repo1.

1 Introduction

Human-AI interaction is becoming increasingly
important in our daily lives as the number of AI
assistants such as ChatGPT (OpenAI, 2022) grows.
Humans employ these assistants in many different
areas ranging from healthcare (Jeblick et al., 2023;
Liu et al., 2023; Howard et al., 2023) to educa-
tion (Moore et al., 2022; Abdelghani et al., 2023;
Dijkstra et al., 2022). In a survey conducted by
Skjuve, authors find that individuals use ChatGPT
with the motivations such as productivity, novelty,
creative work, learning and development. For in-
stance, developers use these assistants to increase

1https://github.com/gglab-ku/cogeval

Figure 1: Decision-making similarities between the user
and various models are calculated using various diver-
gence metrics, then linked to collaboration preferences
and cognitive trust.

their productivity. Barke et al. (2023) highlight that
developers use them 2 both to expedite their cod-
ing processes and explore novel coding approaches.
People also use these assistants for producing cre-
ative or formal content, e.g., writing articles, stories
or formal letters. Finally, they are more commonly
utilized as knowledge repositories akin to search
engines, e.g., how an air conditioner cools a room,
to enhance the knowledge of their users. This in-
creasing amount of interaction raises two critical
questions: How much do we prefer to collaborate
with AI models where we seek their assistance, and
how much do we trust them? Predicting and mea-
suring these before deploying AI models in real-life
scenarios is crucial to foresee how the interaction
will unfold. Therefore, understanding the collab-
oration and cognitive trust dynamics is crucial to
build future AI assistants.

Previous works predominantly focus on predict-
ing the likelihood of collaboration using model-
only or user-only features. For instance, Vodrahalli
et al. (2022) develop a human behavior model to
predict when users will accept AI recommenda-
tions. The study incorporates a range of features,
including model confidence, user confidence, de-
mographic information (e.g., age, sex, and educa-

2https://github.com/features/copilot
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tion level), and user opinions for AI (e.g., how
often AI aids in user’s daily tasks). Yin et al.
(2019) examine the impact of the stated and ob-
served accuracy of the models during human-AI
interactions on the trust of the users. In addition to
common model features like accuracy, the effect of
model generated explanations on human collabora-
tion and trust (Bansal et al., 2021b; Kocielnik et al.,
2019; Shin, 2021; Zhang et al., 2020) are explored.
On a similar line, Bansal et al. (2019), highlight
the importance of model predictability, showing
that when participants know when AI would suc-
ceed/fail, the level of collaboration increases. In
short, existing work either employ shallow (e.g.,
accuracy), or sophisticated (e.g., explanations, pre-
dictability) model features; along with shallow user
features (e.g., age). However, studying user and
model features jointly to quantify and predict the
level of collaboration and cognitive trust to AI, is
left unexplored to the best of our knowledge.

To address that, we propose a novel experimen-
tal setup sketched in Fig. 1 to analyze the decision-
making similarity (DMS) between human and AI
models and its impact on collaboration and cog-
nitive trust. We first implement a diverse set of
models ranging from statistical models to GPT-
family ones specifically: tf-idf, Enhanced LSTM
(Chen et al., 2016), RoBERTa (Liu et al., 2019),
and davinci-003 (Brown et al., 2020) on Natural
Language Inference (NLI) task. Then we conduct
a multi-staged user study: In the first stage, we
present the generated label distributions, a.k.a. soft-
labels, from the models to participants and ask
them to choose the closest label distribution; where
in the second stage, users answer various ques-
tions regarding collaboration and cognitive trust
to the closest model. We define the distance as
the divergence between the human-AI predictions,
i.e., soft labels, using various metrics (e.g., Jensen-
Shannon Distance (JSD) (Lin, 1991), Kullback-
Leibler (KL) (Kullback and Leibler, 1951)). Fi-
nally we analyze the relation between these metrics,
a.k.a., DMS, and the user ratings for collaboration
and cognitive trust.

Our initial findings suggest that: (1) People tend
to collaborate with AI models when their decision-
making processes—measured via DMS—are simi-
lar. However, they are less likely to develop cogni-
tive trust in these models. Surprisingly, they may
exhibit stronger collaboration tendencies with AI
models even when their trust in the model is low.

(2) A particular type of DMS, low inverse KL
divergence, has the most influence on collaboration
likelihood: agreeing on the same answer (right or
wrong) with high confidence. (3) Finally, cognitive
trust seems also related to low inverse-KL; however,
it might also require another type of DMS with low
forward-KL, i.e., avoiding being overconfident in
case of uncertainty. Therefore, its likelihood can be
indicated by JSD. It should be noted that, our find-
ings are indeed encouraging, however, are bound to
the small set of experimented models, task, dataset
and user pool. With this work, we hope to pave the
way towards incorporating the soft-labels to user
studies and use the suggested divergence metrics to
approximate collaboration and trust to AI models
before model deployment.

Our contributions can be listed below:

• To the best of our knowledge, this is the first
study that investigates the impact of “decision-
making similarity” (DMS)—measurable via
divergence metrics on soft labels—on human-
AI collaboration and cognitive trust AI.

• We propose a comprehensive, yet, flexible
four-staged user study to measure DMS. Al-
though originally designed for the NLI task, it
is easily adaptable to any classification task.

• To encourage further studies on collaboration
and trust, we share all resources, including the
user study design, participant outputs, NLI
models and predictions and related implemen-
tation.

2 Task Setup

To link the dimensions of human-AI interaction
with the model features, we first identify a down-
stream task that requires reasoning (see §2.1). Then
we train a diverse set of models and acquire soft
labels (see §2.2). Finally, we propose and calculate
several metrics to calculate the distance between
the labels provided by humans and models (see §3),
which we refer to as decision-making similarity.

2.1 Dataset
The SNLI (Stanford Natural Language Inference)
dataset (Bowman et al., 2015) is a well-known re-
source used to evaluate the natural language in-
ference capabilities of models. The task is mostly
associated with reasoning abilities and is part of the
popular language understanding benchmark (Wang



Premise Hypothesis Soft Labels Hard Label Type

Two kids playing on a street. I1: Two children have fun on a street. E, E, E, N, N E 3GS
A group of bikers pedal along. I2: A group of cyclists are in a marathon. N, N, N, N, E N 4GS
A man fishing in the ocean. I3: A man is driving a car. C, C, C, C, C C 5GS

Table 1: A sample of validated SNLI Pairs from (Bowman et al., 2015). E: Entailment, N: Neutral, C: Contradiction

et al., 2019). Here, each instance is annotated by
five workers, and the resulting premise-hypothesis
pairs were labeled as 3GS, 4GS, or 5GS, as shown
in Table 1, where the number indicates the maxi-
mum number of agreements. To reveal differences
between models and create variation in the user
study, we use 4GS pairs instead of the more trivial
5GS. Finally, we reduce the sample size from 90 to
50, considering the human attention span. 3

2.2 Models

To diversify the model features—model accuracy,
confidence, and soft-label distribution— we con-
sider both neural and non-neural models, differ-
ent architectures (e.g., autoregressive decoder and
bidirectional encoder), and different techniques
such as fine-tuning and zero-shot prompting. We
particularly include models with the highest accu-
racy (Liu et al., 2019; Chen et al., 2016), highest
confidence (Brown et al., 2020), diverse label dis-
tribution and include a random baseline for compar-
ison. All the models are trained on SNLI training
split by excluding the instances that are demon-
strated to human annotators.

Random baseline It assigns probabilities, a.k.a.,
confidence scores, randomly to each label (i.e., neu-
tral, contradiction, entailment) drawn from a uni-
form distribution. A small Gaussian noise with a
mean of 0 and variance of 0.05 is added to the soft
labels 4 and then normalized for the user study to
avoid easy recognition.

TF-IDF We extract TF-IDF weighted lexical fea-
tures from both premise and hypothesis sentences
and train a statistical linear classifier using the
LBFGS optimizer.

RoBERTa (Liu et al., 2019) We fine-tune the
roberta-large for pair-wise classification on

3Participants must carefully examine each model’s con-
fidence score and conduct analyses on similarities and dif-
ferences. The annotation of 50 instances takes around 60
minutes.

4We use soft label, confidence scores, and probabilities
interchangeably throughout the paper.

SNLI training dataset by excluding the instances
that are demonstrated to human annotators. We use
the default parameters provided with AllenNLP 5.

Enhanced LSTM (Chen et al., 2016) The model
uses a chain of LSTMs. The first layer, a bi-LSTM,
encodes the premise and hypothesis pairs. The
model then applies a form of soft alignment be-
tween premise and hypothesis token pairs to en-
hance the representations. Finally, the represen-
tations are fed into another bi-LSTM, and then
passed through a pooling operation, followed by a
softmax. We train the model from scratch with the
default parameters.

<premise_sentence>
Can we infer that <hypothesis_sentence>?
Answer as yes, no, or maybe. Answer:

Table 2: Prompt template for text-davinci-003.

da-vinci-003 (Brown et al., 2020) We do
zero-shot prompting with text-davinci-003
model through its publicly available API and set
max_token to 1. We use the prompt template sim-
ilar to Webson and Pavlick (2022) given in Ta-
ble 2. We then map the model’s responses of “yes”,
“maybe” and “no” to the entailment, neutral, and
contradiction labels, respectively.

3 Similarity Calculation

We define the decision-making similarity as the dif-
ference between two probability distributions 6, P
and Q, measured by KL and Jensen-Shannon diver-
gence. Here, P refers to the soft-label distributions
from human annotations, whereas Q refers to the
label probabilities from models, a.k.a. agents.

5https://github.com/allenai/allennlp-models/
blob/main/allennlp_models/modelcards/
pair-classification-roberta-snli.json

6We have also investigated various distance metrics mostly
based on hard labels, such as minimum square error, agree-
ment percentage and Pearson’s correlation. Due to the un-
promising results and the lack of space in the paper, those are
ommitted.

https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/pair-classification-roberta-snli.json
https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/pair-classification-roberta-snli.json
https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/pair-classification-roberta-snli.json


Forward and Inverse KL Divergence KL di-
vergence, denoted as DKL(P ∥ Q) quantifies the
information loss when using distribution Q instead
of P:

α-KL = DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)

We refer to the above divergence as the forward-
KL and denote it with α-KL. One would expect
a high α-KL, when human annotations are more
distributed, i.e., P is wider, but the model is over-
confident on one label, i.e., Q is narrow. Similarly,
the inverse KL divergence is given by:

β-KL = DKL(Q ∥ P ) =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)

β-KL is larger in the opposite scenario—when P
is narrow, i.e., humans mostly agree on a label,
but Q is wide, i.e., model’s label probabilities are
widely distributed, or Q has a peak on another label
that humans do not agree. Therefore, the α-KL is
mainly influenced by instances with low human
agreement but high model confidence. In contrast,
the β-KL indicates situations where humans mostly
agree, but the model lacks confidence. Both types
of situations can reveal discrepancies in decision-
making similarities, hence valuable for the user
study.

Jensen-Shannon Divergence: Although similar
to KL-divergence, it is symmetric and finite, which
makes it more intuitive (Nie et al., 2020).

DJSD(P ∥ Q) =
1

2

(
DKL

(
P ∥ P +Q

2

)

+DKL

(
Q ∥ P +Q

2

))
We use Jensen-Shannon Distance calculated as√
DJSD in our analysis. JSD considers the mix-

ture distribution of P and Q and calculates forward
KL divergences from both distributions. Conse-
quently, one would expect JSD to reflect both α
and β KL. Hence, we anticipate JSD to strike a bal-
ance, effectively capturing the impact of instances
with high human agreement but low machine confi-
dence and vice versa. Therefore we choose JSD as
the primary distance metric for the user study.

4 User Study

We conduct a user study with 100 college-educated
annotators with good command of English, re-
cruited from Prolific 7. We require annotators to
have a minimum approval rate of 90%. Further, we
have set the college level as a filtering criterion. We
have eliminated the participants from 159 to 100.
The median time taken for the study was 35 min-
utes. Our average payment for each annotation was
£4.00 8. Furthermore, we filtered out user results
with an accuracy below 0.60 during the annotation
phase.

4.1 Subset selection
To begin, we first filter instances where two or
more models have identical labels and a confidence
score exceeding 0.95. This results in the removal
of 43 out of 90 instances. As a result, the accu-
racy of the LSTM and RoBERTa models falls short
of aggregated human performance. To maintain
the accuracy ranking, we introduce an additional
7 instances where the models succeed while the
aggregated human answer fails. The accuracy vari-
ation between two sets can be found in Table 3.

Model Accoriginal/subset
Random Baseline 0.35 / 0.26
TF-IDF 0.51 / 0.28
LSTM (ESIM) 0.84 / 0.72
RoBERTa 0.84 / 0.72
Davinci 0.59 / 0.42
Human 0.81 / 0.72

Table 3: Model accuracy variations with subset selec-
tion. Human: Aggregated human annotations.

4.2 Design of the User Study
Our user study contains four stages: i) training, ii)
quiz iii) annotation, and iv) dynamic survey. Dur-
ing training phase, users are provided with guide-
lines, which contain the general flow of the study
with detailed instructions and a detailed explana-
tion of the annotation task with examples. Full an-
notation guidelines can be found in Appendix A. In
part ii), participants answer ten questions and then
see the correct answers with explanations for train-
ing purposes. iii) During the annotation phase,
the participants are shown the selected premise-
hypothesis pairs, along with the label distributions

7https://app.prolific.co/
8The minimum wage in the UK is £10.42/hr.

https://app.prolific.co/


from the selected models (see §2.2) as shown in
Fig 2. The users are instructed to choose the clos-
est agent by means of the label distributions. The
order of the models is shuffled each time to prevent
users from finding shortcuts. Only one option can
be chosen. Participants can skip the question and
go back to the question. They are also asked to rate
the difficulty of the question from 1 to 10.

After the annotation phase, we calculate the most
similar model to the user with the JSD metric. This
is because JSD contains both the α and the β-KL
calculations, penalizing models that are overly con-
fident on a single label w.r.t the users (high α-KL),
and vice versa (high β-KL). We calculate the dis-
tance between the user’s answer and all the other
label distributions. Then, we sum the distances for
each model and identify the most similar one to the
user, which we refer to as the aligned model.

Figure 2: The annotation task is framed as a multiple-
choice question answering problem, where the available
options correspond to label predictions generated by the
selected models.

Then, in the dynamic survey phase, the users
are asked to review their own selections side-by-
side with their aligned model. They can inves-
tigate four categories: (A) agreements with the
aligned model: the common successes and fail-
ures, and (B) the disagreements with the aligned
model: the cases where the model succeeded and
the user failed, and vice versa. The details are
given in App. 8. After they revise the similarities
and dissimilarities, they are asked several questions
regarding the model behavior and the following out-
comes: (1) Collaboration: “Would you collaborate
with this agent to accomplish the task?”, (2) Cogni-
tive Trust: “On a scale of 1 to 5, how much do you
trust the agent to make rational decisions?” For col-
laboration, the choices are provided in verbal likert

scale format, including “definitely not”, “proba-
bly not”, “neutral”, “probably yes”, and “definitely
yes”. Finally, to validate our assumptions of the
task, we ask several task-related questions, such
as the difficulty and subjectivity of the task, and
skills needed to solve the task, such as emotional
awareness, logical thinking, and being a native En-
glish speaker. To date, we have not exploited this
information, and we will do so in future work, es-
pecially when there are more than SNLI tasks to
perform. A full list of the questions and related
figures can be found in Appendix.

5 Results

Our main results are given in Table 4. Here, the
collaboration and cognitive trust scores are aver-
aged over the users that are aligned with the model
(shown with the rows). Then each score is again
averaged to get a final score for each aspect. As
given in Table 4, the majority of the users (60%)
are aligned with RoBERTa, followed by LSTM
(34%) and Davinci (6%). None of the users are
found similar to the random baseline or the tf-idf
model, validating the suitability of the chosen met-
ric and the quality of the user study. We find that
the average collaboration score (3.88/5) is consider-
ably higher than the average cognitive trust (3.34/5)
score (the full distributions can be seen in Figures
3 and 4). Finally, in Table 5, we provide additional
information on the models, users and their deci-
sion variations. We elaborate on the results below
separately for collaboration and cognitive trust.

Collaboration According to Table 4, Davinci has
the highest collaboration score despite having the
lowest cognitive trust score. It has also the lowest
β-KL divergence to its aligned users. As discussed
in §3, β-KL gets higher when the user predicts a
label with high confidence, but the model has less
confidence. Therefore, Davinci most effectively
fulfills confidence expectations of its aligned users
for their answers. In contrast, users aligned with
the RoBERTa and LSTM models exhibit higher
β-KL values. That means users are more confident
than their models in their predictions. They also
have lower collaboration ratings, suggesting that
agreeing on the same answer with high confidence
is a critical DMS feature for collaboration. As a
result, as seen in Table 5, Davinci and its corre-
sponding users establish the most confident aligned
user-machine pairs.



#p Aligned
model α-KL β-KL JSD Collaboration

rating
Cognitive trust
rating

60 RoBERTa 0.53 1.21 0.23 3.9 3.36
34 LSTM 0.64 1.20 0.22 3.7 3.41
6 Davinci 0.81 0.98 0.26 4.1 2.66
100 average 0.64 1.19 0.23 3.88 3.34

Table 4: User study rating results over 5 points. #p: Number of participants aligned with the model. Rows show the
averaged scores for the model calculated over the users aligned with it. The final row shows the averaged scores
over all models.

Cognitive Trust We expect participants to have
a sense of the rational characteristics of the mod-
els after the user study. This is because the dis-
agreement and agreement cases are shown exclu-
sively to them during the dynamic evaluation phase.
Our results in Table 4 shows that LSTM has the
highest cognitive trust scores, followed closely by
RoBERTa. However, we notice a significant de-
crease in trust for Davinci. As given in Table 4,
Davinci suffers from high α-KL. As discussed in
§3, α-KL gets higher when a model is overcon-
fident in its predicted label, but the user has low
confidence in that label; instead, user confidence
spreads over the labels. Davinci has also relatively
lower accuracy than the average accuracy of its
aligned users as shown in Table 5. This also indi-
cates the overconfidence of the model in wrong la-
bels for most of the questions. We think that observ-
ing this dissimilarity between themselves and mod-
els damages cognitive trust of users in the machine.
We further observe that, JSD, where combines
the effects of both α-KL and β-KL divergences
give the same model rankings (LSTM-RoBERTa-
Davinci) for cognitive trust. Therefore, it might be
more advantageous to incorporate both divergences
and solely rely on JSD for assessing cognitive trust.
However more comprehensive model comparisons
are needed to draw a concrete solution, which is
not feasible in this user study.

To summarize, we observe that participants tend
to collaborate with their most similar models; and
they give higher collaboration ratings when they
share high confidence in answers with their models,
as indicated by lower β-KL. However, this is not
the case for cognitive trust. Participants give higher
trust ratings when they share low confidence in
their answers and avoid being overconfident, as
indicated by lower α-KL and JSD. The results
also demonstrate that individuals may assign higher
collaboration ratings to models, even if they have

low cognitive trust to the model.

Figure 3: Collaboration ratings among users. Over half
of the participants give 4/5 ratings for collaboration with
their aligned model.

Figure 4: Cognitive Trust ratings among users. Partic-
ipants are distributed across 3 and 4/5 ratings for their
aligned model.

6 Discussion and Analysis

(1) When multiple models share the same final
labels, which one do people typically choose?



Aligned
model

Model
acc.

User
acc.

Model
conf.

User
conf.

Soft label
agreement

Hard label
agreement

Selected
higher conf.

Selected
lower conf.

RoBERTa 0.72 0.69 0.80 0.86 0.25 0.71 0.40 0.05
LSTM 0.72 0.70 0.83 0.84 0.39 0.69 0.16 0.14
Davinci 0.42 0.66 0.94 0.91 0.53 0.64 0.05 0.05

Table 5: User-model performances and selection details. Soft label agreement: Number of times user-model agree
on soft label. Hard label agreement: Number of times user-model agree on hard label. Selected higher/lower conf:
Number of times users selecting different model with higher/lower confidence on the same label.

We analyze the test instances where multiple mod-
els provide the same hard labels but distinct label
distributions. We then compare how frequently the
users choose the highly confident model versus the
less confident model. The majority of participants
(67%) choose the most confident model answer for
97% of the cases. This result supports the find-
ings of Vodrahalli et al. (2022), which suggests
individuals accept solutions from highly confident
models. We also see that as average user accuracy
decreases, users tend to choose alternative mod-
els with the same label but lower confidence. So
their answers are distributed more evenly across
other labels. To quantify, we calculate Pearson’s
r between the number of times users selected the
models and the average user accuracy on that ques-
tion. With r -0.41, the number of times selecting
low confident models increases as average user ac-
curacy decreases. This result suggests that humans
will often choose the most confident model, but the
label distribution of a model will also be critical in
cases when they are uncertain.

(2) When do people not choose their most similar
model? We first calculate the number of times the
user directly chooses its matched model answer. In
Table 5, we see that the majority of Davinci users
have comparable confidence levels and agree with
their model on 53% of the cases. Therefore only
for 10% of the questions, users prefer other models’
answer with the same label. However, overall they
have the lowest agreement with their model. For
RoBERTa, aligned users choose higher confident
model answers in 40% of the cases. RoBERTa has
the lowest average confidence and its users tend to
select more confident models. As for LSTM, the
agreement between users and the model is nearly
the same as with RoBERTa. Nevertheless, in most
cases, people choose the LSTM model itself, but in
14% of the cases, they choose models with lower
confidence.

(3) What is the relation between collaboration
and cognitive trust? We calculate Pearson’s r
between collaboration and cognitive trust ratings
of users. We first omit two outliers from the
data. Then, over 98 user data ratings, with r=0.3,
p=0.002, we see a weak positive correlation be-
tween them. This result once again suggests that
cognitive trust may not be a necessity for high col-
laboration rates.

7 Related Work

Factors in human-AI collaboration: The fac-
tors to consider in HAI can change based on the
type of AI-enabled systems, such as whether it is
a physical machine, such as a robot, or a virtual
agent like today’s popular NLP models (Lee, 2018;
Gillath et al., 2021). Araujo et al. (2020) study the
human factor by analyzing different user groups
in automated decision-making with AI. They con-
sider privacy concerns, age, decision-making type,
AI role, and other features and investigate AI’s
perceived justice, usefulness, and risk. Bao et al.
(2021); Lee (2018); Gillath et al. (2021) study the
relationship between trust and human-AI collabo-
ration. Glikson and Woolley (2020) reviewed the
trust factors and identified two dimensions of trust:
i) the cognitive trust based on the “good rationality
skills” of the object of trust, and ii) the emotional
trust based on the positive effect for the object of
trust (Lewis and Weigert, 1985). Another line of
work studies AI-advised decision-making scenar-
ios. For instance, Bansal et al. (2019) find that
accuracy is not the primary metric for achieving
the best human human-machine team performance.
Bansal et al. (2021a) further optimize AI models
with human preferences and suggests that models
should minimize the number of solutions that pro-
vide low-confidence accurate answers in favor of
high-confidence accurate answers for better col-
laboration. Vodrahalli et al. (2022) report similar
findings and show that high confidence in AI pre-



dictions increases human intention to incorporate
them in their decision-making. Moreover, Bansal
et al. (2019) demonstrate that human awareness of
AI errors enhances overall human-AI team accu-
racy. Thus, establishing clear and predictable AI
error boundaries is crucial for improving collabora-
tion with AI.

Soft-labels: Pavlick and Kwiatkowski (2019)
demonstrate that the variation of human annota-
tions in the SNLI dataset might contain valuable
signals and should not be treated as noise. It is a
pattern observed when the number of annotators
increases and can be identified within Gaussian
mixture models. Plank (2022); Uma et al. (2021)
report the annotation variation and argue that this
variation should not be discarded. Furthermore,
this variation has been shown beneficial for opti-
mizing models by using soft labels—probability
distributions over human annotations—to achieve
better performance with multi-task learning setups
instead of single hard labels (Fornaciari et al., 2021;
Davani et al., 2022; Meissner et al., 2021).

Sample size in user studies: In Human-
Computer Interaction literature on human factors,
a sample size of 100 is commonly applicable by
local standards (Caine, 2016), where many stud-
ies involve even fewer than 100 participants. For
instance, Pinski et al. (2023) surveyed 111 par-
ticipants to explore the impact of AI knowledge
on enhancing AI delegation. Similarly, Xu and
Zhang (2023) examined the efficacy of AI augmen-
tation for real-time mathematical tasks, assessing
user anxiety through a Likert scale with a cohort
of 80 participants. Tretter et al. (2023) involved
81 participants to study AI’s acceptance in human
decision-makings. Boonprakong et al. (2023) inves-
tigates the physiological effects of cognitive biases
with 33 participants. In the context of designing
an editing tool for conceptual diagrams, Pan et al.
(2023) engaged 44 participants, while Xu et al.
(2023) study involved 78 individuals to compare
AI recommendations in human-AI teamwork. Fur-
thermore, the ChaosNLI dataset (Nie et al., 2020)
collected opinions from 100 participants to handle
the diversity in human reasoning. Finally, Conroy
(2016) show that a sample size of 100 can provide a
±10% margin of uncertainty when studying group
characteristics or behavior.

8 Conclusion and Future Work

In this work, we design a novel experimental setup
on a textual entailment task to analyze the decision-
making similarities between AI agents and humans,
and their impact on collaboration and cognitive
trust. To do so, we train a set of diverse models
ranging from tf-idf to RoBERTa with varying ac-
curacies and confidence levels. We then identify
and calculate a set of divergence scores to measure
the distance between human-AI label distributions.
Finally, we design and conduct a comprehensive
four-staged user study where the users are tasked to
choose a label distribution instead of a single label
and are matched/aligned with an agent using the
identified metrics. We survey the users about their
aligned model (e.g., whether they would collabo-
rate or trust the model) and find that different di-
vergence metrics on soft-labels, i.e., α-KL, β-KL,
and JSD) contribute differently to collaboration
preference and cognitive trust.

Our results show that people tend to collaborate
with models when their decision-making processes
are similar. However, they might not fully trust
these models at the same level. Nevertheless, peo-
ple are still likely to collaborate with models even
if they show low cognitive trust. A specific type of
DMS between user and model affects collaboration
likelihood: agreeing on the same answer (right or
wrong) with high confidence. This type of DMS
seems necessary but insufficient for cognitive trust
likelihood. A trust may further require another type
of DMS, i.e., the model avoids being overconfident
in cases where users have low confidence.

Future work will focus on exploiting the user
study results to optimize the models e.g., via fine-
tuning, to improve specifically collaboration or cog-
nitive trust. Furthermore, the proposed divergence
scores along with the user study can be deployed
to evaluate the models on those aspects before de-
ployment.

Limitations

Our design choice in user study led the models to
receive feedback from different number of users.
The study may be increased to a higher number of
participants to have more robust results. Regarding
datasets that could be used in model optimization
or evaluation, we examined the commonly used
method in literature, which involves aggregating
diverse human annotations to capture collective hu-
man opinions (see Appendix B). However, aggre-



gated group annotations do not always reflect the
user’s real divergence from the models. Therefore,
we also raise the question regarding the reliance on
aggregated human annotations as ground truth to
reflect accurate human opinions on model interac-
tions. Future research could also focus on that and
data collection to accurately reflect human opinions
for models at interaction.
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A User Study

A.1 Guidelines
Guidelines
Page 1.
In this survey, you will be shown a pair of sentences in which you should determine
the inference relation between them. The first sentence is a premise, and the second is
a candidate hypothesis. There are three possible inference relations between sentences:
entailment, neutral, or contradiction.
In the first part of the survey, you will be asked 10 test questions to confirm the task is
understood. In the second part, you will be asked 50 questions from the task. In the final
part, you will be asked task-related questions. The survey will take approximately 30 min.
Thank you for your participation.
Page 2.
Task Examples:

Entailment: Premise sentence definitely implies the hypothesis.
e.g.:
Premise: “Two dogs are running through a field."
Hypothesis: “There are animals outdoors.”
Correct label: Entailment

Neutral: Premise sentence might imply the hypothesis.
e.g.:
Premise: “Two dogs are running through a field."
Hypothesis: “Some puppies are running to catch a stick”
Correct label: Neutral

Contradiction: Premise sentence definitely does not imply the hypothesis.
e.g.:
Premise: “Two dogs are running through a field."
Hypothesis: “The pets are sitting on a couch.”
Correct label: Contradiction. This is different from the maybe correct (neutral) category
because it’s impossible for the dogs to be both running and sitting.
Page 3.
In the next part of the survey, you will answer 50 questions with multiple choices that
include confidence-relation pairs. You can select the choice which reflects your confidence
in labels.

Premise: <premise_sentence>
Hypothesis: <hypothesis_sentence>
Choice format: x% Contradiction | y% Neutral | z% Entailment
e.g: 0.55 Contradiction | 0.35 Neutral | 0.10 Entailment

Table 6: User study guideline



A.2 Results Page

(a) Agreements between user and aligned model. Users can check when both they and the model
succeeded or failed.

(b) Disagreements between user and aligned model. Users can check when they succeeded but the
model failed and vice versa.

Figure 5: Agreements/disagreements between user and the aligned model.



B Human Annotation Aggregation

We compare our user study results with aggregated
user labels. Specifically, we aggregate 100 users’
hard label answers and call the label distribution
as aggUSER. We then calculate average user
divergences in the user study (avgUSER), as we
did in the study, but this time with all users, and
compare their divergences to the models. As seen
in Table 7, while mostly the order of divergences
to models is preserved, for β -KL, the LSTM
changes place with Davinci. Therefore, we again
emphasize the difference between the two methods
averaging and aggregating: especially studying
with low-level sample sizes.

Agent Ag % α-KL β-KL JSD
(avg/agg) (avg/agg) (avg/agg) (avg/agg)

LSTM 0.64 / 0.74 0.73 / 0.47 1.48 / 0.64 0.25 / 0.25
RoBERTa 0.68 / 0.82 0.56 / 0.30 1.23 / 0.47 0.24 / 0.20
Davinci 0.51 / 0.54 2.76 / 2.61 1.33 / 1.06 0.38 / 0.42

Accuracy (avgUSER-aggUSER)
0.70 / 0.84

Table 7: Ag% represents the percentage of questions where the model-group agrees on its hard label. The table
shows the model distances of the aggregated human-100 group and the average user in a user study. Except for
β-KL, the order of models’ divergences is preserved.


